CS-815 Theory of Automata-II
3+0
This course will provide students with an understanding of the underlying
theory of Automata.
 Michael Sipser, "Introduction to the Theory of Computation", 3rd
Ed., Cengage Learning, 2013
• John C. Martin, "Introduction to Languages and the Theory of
Computation", 4th Ed., McGraw Hill, 2011.
• J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to
Automata Theory, Languages and Computation", 2nd Ed.,
Addison-Wesley 2001
• Elaine A. Rich "Automata, Computability and Complexity: Theory
and Applications", Prentice Hall, 2013
 Papadimitriou, Computational Complexity
Deterministic Finite Automata, Formal description with examples,
Designing DFA, Non-deterministic finite automata, Equivalence between
NFA and DFA, Regular expressions and their algebra, Pumping lemma for
regular languages, Context free grammars and languages, Pushdown
automata, Equivalence between PDA and CFG, Turing machines and its
variants, Universal Turing machine, Decidability and the notion of
tractability, P vs NP discussion, Cook's theorem, Computability theory,
Rice's theorem, Reducibility